The Auto Channel
The Largest Independent Automotive Research Resource
Official Website of the New Car Buyer

pub 2010 BMW Group Innovation Days Mobility of the Future - project i

PHOTO (select to view enlarged photo)

SEE ALSO: 2010 BMW Group Innovation Days Mobility of the Future
Complete Report:
Chapter 1. Why Electromobility?
Chapter 2. Project i.
Chapter 3. The Electric Drivetrain.
Chapter 4. Lightweight design and the LifeDrive concept.
Chapter 5. CFRP - A Material for the Future.

Chapter 2. project i

Based on its review of current social and environmental trends (ch. 1), in mid-2007 the BMW Group presented a new strategic roadmap for the company – the “Number One” strategy. This strategy makes a firm commitment to profitability, sustainable value creation and safeguarding the company’s independence. As well as growing the company’s core business, the aim is also to develop new profitable business lines across the entire automobile life cycle and value chain. At the same time, the BMW Group has resolved to invest substantial amounts in technologies of the future, new vehicle concepts and pioneering drive systems. The aim is clear: to maintain the BMW Group’s position as the leading supplier of premium products and premium services for personal mobility.

The new corporate strategy is based on a wide-ranging qualitative review of society’s aspirations in the field of mobility and also of the potential shape of future technologies, trends and challenges in this field – particularly in the context of climate and demographic trends. One of the company’s answers to these issues is project i.

“project i is the BMW Group’s response to the future challenges in the field of personal mobility.” (Martin Arlt)

project i: the mission.
project i, launched in late 2007, is an initiative to develop sustainable and pioneering mobility concepts. There must also be a collateral transfer of know-how from this project to the company as a whole and to future vehicle projects. The long-term goal of project i is to bring fresh thinking to the company’s technologies, processes and vehicle concepts, whether in production, development or sales. The concrete mission is to develop new, pioneering products geared closely to future challenges and customer requirements in the field of urban mobility.

The approach.
But how best to implement this mission? Ultimately, what is required is not just new processes and technologies but a complete critical reappraisal of automobile design as we know it. That is why project i transcends existing structures and brings together in a single unit experts and “outside-the-box” thinkers from throughout the company. This small but efficient and dynamic organisational unit is tasked with defining the aims and requirements for sustainable mobility solutions of tomorrow and aligning them with future customer requirements. To help this team shed all constraints and preconceptions, the project is not brand-specific. This allows the think tank to take an unconventional and independent approach, yet at the same time to work with the full support of experts drawn from the entire company. In a culture of open and transparent knowledge-sharing, project i leverages expertise from all parts of the company.

“It’s a great experience for me to be able to work in a project like this, with colleagues who are all on a similar wavelength. From the start, we were given every freedom we needed. The result was a mood, an atmosphere you would normally only encounter in a start-up company.” (Peter Ratz)

A new departure.
But the BMW Group development engineers who embarked on project i two and a half years ago were not starting completely from scratch. Their point of departure was the intensive research which the company had already undertaken into mobility issues and future customer requirements, with the aim of identifying new development potential for the BMW Group. And although the project i research work is carried out not just with reference to vehicles but in the wider context of integrated mobility solutions as a whole, it quickly became clear that the first milestone in the project would be a car, one that would combine maximum eco-friendliness – i.e. zero-emission operation – with a clear focus on modern urban mobility requirements. This vehicle has a name: the “Megacity Vehicle” (MCV).

The overall project goal is maximum sustainability. From the production process, starting with the first supplier, through to component recycling at the end of the vehicle life cycle, sustainability based on the three cornerstones of eco-friendliness, economic efficiency (profitability) and social compatibility must be the main process driver. First of all, therefore, the developers scrutinised all processes and components in the value chain. They verified whether existing processes were adequate to meet the project’s high sustainability ambitions or whether some areas of the chain were in need of optimisation or redesign. The outcome of this assessment formed the starting point for developing the Megacity Vehicle.

“We wanted to get a clearer picture of what future mobility will look like and, based on that, to develop sustainable mobility concepts specifically for urban application. Also, we wanted this sustainability to extend to the entire process, from development of the product, through its useful life, to component recycling or reuse.” (Peter Ratz)

The result.
The project has made the most of all available freedoms and all scope for “pushing the envelope”. The result is an integrated and sustainable mobility concept – the Megacity Vehicle (MCV). The MCV represents the BMW Group’s vision of one possible concept for a sustainable city car. It is designed mainly for urban operation and combines dynamism with comfort and sustainability. With the newly developed electric drivetrain (ch. 3), the revolutionary “LifeDrive” body concept and the innovative use of CFRP in the passenger cell (ch. 4), it is a solution for confident, safe and convenient urban driving which is also completely emission-free.

The MCV was developed from an integrated, comprehensive perspective that necessitates certain fundamental process changes. Due to the new powertrain and vehicle architecture, and the use of innovative materials, certain production processes are entirely new. To meet these novel requirements, the BMW Group is lining up new, high-grade expertise, jointly developed with strong partners like SB LiMotive (battery cell development) and SGL Automotive Carbon Fibers (carbon fibre and carbon fibre fabrics manufacturing).

“The technologies developed by the BMW Group for project i offer enormous potential for ensuring ecological and economic sustainability.” (Martin Arlt)

But although the principle of sustainability underpins every stage in the process chain, the BMW Group never focuses solely on eco-friendliness and resource efficiency to the exclusion of all else. Its products must also be economically sustainable, as well as profitable.

MINI E – pioneering new ground in electric mobility.
The success story known as project i began to take more concrete shape in spring 2008 with the MINI E. It was also around this time that the project first came to the notice of a wider public. As the BMW Group’s first e-mobility enabling project, the MINI E not only set new technical standards; with an average driving range of 150 kilometres in everyday operation and maximum power of 204 hp, it also pioneered new ground as part of the BMW Group’s alternative drive development programme and as a step on the way to future CO2-free mobility.

One of the first aims of the MINI E project was to release vehicles for customer trials as soon as possible in order to gain valuable feedback from users about the performance of electric vehicles in day-to-day operation. Since mid-2009, therefore, selected customers have been taking part in large-scale MINI E field trials in Germany, the USA and the United Kingdom. In two intensive testing phases, limited-production MINI E models are supplying important information about driving patterns and vehicle operating performance, all of which is being incorporated into the ongoing development and refinement of the MCV. Comprising more than 600 MINI E vehicles, the BMW Group’s EV customer test fleet is one of the largest in the world.

The MINI E on the road.
In all three countries where trials are taking place, the BMW Group is working, often closely, with local energy companies, universities and governments. The MINI project is not just about giving users the opportunity to experience a completely new style of personal mobility, it is also about getting together with partners to shape some of the infrastructure. For example, the energy companies can enable users to run their vehicle on “green”, renewable electricity, if the customer so wishes.

MINI E driving patterns study, Berlin – electric mobility is suitable for everyday use.
Although the trials are still in full flow, initial results from Berlin are extremely encouraging. In a pre-trial survey, the pilot users said they expected to find the vehicle’s operating range and recharging times restricting. In practice, however, only in a few cases were these fears actually borne out. The Berlin study showed that more than 90% of participants did not find that the average 150-kilometre driving range restricted their customary mobility patterns in any way. Nor did they find the charging times a constraint.

Driving patterns for the MINI E users proved to be only marginally different from the driving patterns of comparable MINI Cooper and BMW 116i users. Average trip distance differed between BMW 116i, MINI Cooper and MINI E users by only two kilometres. Total daily mileage was also similar for all three vehicles, standing at 37.8 kilometres for the MINI E (slightly above the urban average for Germany as a whole), 42 kilometres for the BMW 116i and 43.5 kilometres for the MINI Cooper. The longest single trip to date by a MINI E customer was 158 kilometres.

Nevertheless, a comparison with the typical driving patterns for the BMW 5 Series also shows that an electric vehicle is not equally suitable for all types of mobility needs. Nor has this ever been claimed. Nevertheless, 66% of Berlin users rate the MINI E as equal to a conventional vehicle on flexibility.

As far as recharging is concerned, it is becoming clear that, as regards public infrastructure, users’ first preference is for charging points near to the workplace, in public parking garages, at major traffic hubs such as railway stations and airports, and in shopping centres. The most popular recharging option overall, however, is a home charging point, which is already sufficient to meet day-to-day driving needs. The option of recharging with renewable electricity provided by project partners Vattenfall Europe met with a great deal of interest. This indicates that users view the electric vehicle as part of a wider system which includes not only the vehicle, but also the recharging infrastructure and the origin of the energy used, and that they want to make responsible behaviour choices within that overall framework.

MINI E in the USA – more driving enjoyment, with zero emissions.
Customer field trials with the MINI E are under way in the USA too. Trials with the large 450-vehicle fleet in the USA were monitored by the BMW Group in a special research collaboration with the University of California (UC Davis). This study closely examined the MINI E’s practicality for ordinary, everyday driving and again sought to shed more light on driving patterns.

The results confirm the positive feedback already obtained in Berlin. In the USA, too, the MINI E fully meets the mobility needs of pilot users. The range of 100 miles (approx. 160 km) is perfectly adequate for their daily driving needs. In the USA, the average total daily mileage quoted by the MINI E drivers was approximately 30 miles (48 km), which compares with average daily car use of 40 miles (approx. 64 km) for US drivers as a whole. Home charging was not a problem for users in the USA either. Half of users routinely charged their vehicle on a daily basis, even if this was not actually necessary. As a result, they rarely needed to recharge the vehicle anywhere but in their own garage.

The MINI E also scored high on driving enjoyment. All drivers agreed that it demanded no concessions in this regard. The pilot users quickly got used to the new driving feel and many even went so far as to say that when they changed back to their own car, they found it a less satisfying drive. This is also reflected in the frequency of usage. A third of users said they actually clocked up a higher mileage in the MINI E than in the vehicle it replaced.

Conclusions from the studies.
The results from Berlin and California demonstrate that the BMW Group is on the right course. There were only a few trips that the pilot users could not perform with the MINI E. The reasons most frequently cited for this in the USA, as in Germany, were limited luggage and passenger capacity. The study data shows that, with a slightly longer driving range and more space, a Megacity Vehicle would meet virtually 100% of city dwellers’ driving needs. The BMW Group is already pulling out all the stops to make the necessary changes.

BMW ActiveE concept vehicle – the next step.
The BMW ActiveE concept vehicle is a logical continuation of the research and development work on electric mobility being carried out by the BMW Group under project i. Based on the BMW ActiveE concept, which was unveiled in December 2009, the BMW Group will release a second electric vehicle fleet for customer testing in 2011. The aim of this field trial will be to acquire further knowledge about how well electric vehicles can meet everyday driving needs, and to gain more feedback on what customers want from their vehicle.

Whereas in the MINI E interior space was relatively limited, the BMW ActiveE concept vehicle provides four full-sized seats and boot capacity of approximately 200 litres, thanks to improved integration of the electric drivetrain components. The electric motor specially developed for this all-electric BMW has a rated output of 125 kW/170 hp and a rated torque of 250 Newton metres. Energy is supplied from the likewise all-new lithium-ion batteries, which give a driving range of approximately 160 kilometres (100 miles) in everyday use. The electric powertrain components are a pre-production test version of a powertrain designed for the MCV.

The BMW ActiveE concept vehicle also presents new BMW ConnectedDrive services developed specially for electric vehicles. They include mobile phone-based functions such as battery status checking, charging station location and remote activation of the auxiliary heating and air conditioning.

The Megacity Vehicle – the BMW Group’s first electrically powered production car.
With the Megacity Vehicle (MCV), the BMW Group will offer an innovative solution for sustainable urban mobility which will be brought onto the market by 2013 and sold under a BMW sub-brand. As the development work on the MINI E and BMW ActiveE concept vehicle confirms, any approach that simply converts an existing internal combustion-engined vehicle to run on electric drive (conversion car) cannot hope to harness the full potential of electric drive. The MCV is therefore designed uncompromisingly and specifically around the needs and requirements of electric mobility. The MCV has a newly developed drivetrain (ch. 3) and a revolutionary vehicle architecture (LifeDrive, ch. 4) that combines rigorous lightweight design with optimal space efficiency and maximum crash safety. Since the compact electric drivetrain creates opportunities for new interior configuration options and functionality, as well as greater design freedoms, the MCV will also appeal to a new clientele.

SEE ALSO: 2010 BMW Group Innovation Days Mobility of the Future
Complete Report:
Chapter 1. Why Electromobility?
Chapter 2. Project i.
Chapter 3. The Electric Drivetrain.
Chapter 4. Lightweight design and the LifeDrive concept.
Chapter 5. CFRP - A Material for the Future.