The Auto Channel
The Largest Independent Automotive Research Resource
The Largest Independent Automotive Research Resource
Official Website of the New Car Buyer

New Study Finds that EV Charge Automation Could Reduce Carbon Impact by up to 14% in U.S. and by 43% in California

CAMBRIDGE, Ma., June 21, 2021 -- A new study from Sense and Singularity Energy has demonstrated the potential for significant carbon reductions from electric vehicle (EV) charging using a combination of smart home automation and location- and time-based carbon emissions data from the power grid. The study found that by automating charging to minimize carbon impact, carbon emissions from EV charging could be reduced 8-14% on average across the U.S.

The potential reductions in California are more dramatic, with a potential for 43% carbon savings. California's grid relies on renewable energy for nearly half of its electricity, much of it from low-carbon sources such as solar and wind, which contribute to significant variations in carbon intensity, a measure of carbon emissions per unit of energy consumed. As states increase their reliance on renewable energy sources, their variability will increase, too, offering similar opportunities to shift usage to times when carbon intensity is lowest.

Carbon reductions from automated EV charging could have a significant impact on reaching carbon emissions goals to slow climate change, and while EV charging is the most obvious case, similar opportunities for savings apply to other large loads in the home. The best opportunities for load shaping are activities that can be scheduled flexibly, like running a dishwasher or washing machine during overnight hours to have clean clothes and dishes ready when they're needed in the morning.  For these cases, automation can provide the right balance of meeting consumer needs and optimizing cost, carbon emissions, and constraints of the grid.

The study examined consumers' EV charging patterns using over 100,000 sessions of in-field EV charging data and time-based carbon intensity data for 30 major regional grid balancing authorities for utilities. It found that charging dynamically to minimize carbon utilization was consistently more effective at reducing carbon than Time of Use rates.

The results show that smart home automation can dynamically adjust energy usage to address both grid constraints and carbon emissions goals. A separate study of 1100 California homes conducted by Sense found that 55% of electricity usage in the evening time frame could be shifted to other times during the day or reduced. Using an automated, dynamic approach, utilities can incentivize customers to reduce peak emissions by shifting their activities, including EV charging, similar to the current incentives to reduce peak demand.

Carbon reductions are influenced by the regional mix of energy sources, with some regions offering a potential for higher reductions because of greater variability of carbon intensity in their fuel sources. Among the top 10 balancing authorities, CAISO (California Independent System Operator) had the highest variation in carbon intensity at 307%, followed by SWPP (Southwest Power Pool) at 259%, ERCOT Electric Reliability Council of Texas) at 197% and BPAT (Bonneville Power Authority Transmission) at 181%. For more details, see the complete study.

The analysis showed that most regions can achieve significant carbon reductions by automating EV charging to take advantage of the cleanest energy sources as they come onto the grid. As more states and regions increase the share of energy produced by renewable sources, the carbon savings potential will increase across the country.

Said Sense CEO Mike Phillips, "This EV study is an example of what can be done as we add intelligence to home infrastructure.  As we work on decarbonizing the grid, because of the increased use of intermittent low-carbon energy sources, it is becoming increasingly important to influence not only how much power is being used, but when it is used.  Fortunately, there are many things in the home where people only care about the result - not when the energy is used.  EV charging is a great example, but automation can extend to other key consumers of energy as we build intelligence into the infrastructure of the home."

Said Wenbo Shi, CEO and co-founder of Singularity Energy: "This study demonstrates the potential of data-driven carbon intelligence to improve energy management strategies and cost-effectively reduce carbon emissions. We are filling a gap between decarbonization targets measured in tons of carbon and existing energy management strategies that are still kWh and cost driven. There is a massive opportunity to apply the technology to EVs and other smart devices at scale to rapidly accelerate the transition towards a clean energy future."

Implications for Utilities' Demand Management Strategies
With EV adoption predicted to grow rapidly, propelled in part by the Biden administration's plan to build out a national network of 500,000 EV charging stations, utilities are predicting big increases in electricity usage from EV charging over the coming decade. At the same, aggressive carbon reduction goals at the state and federal levels have mandated that utilities must reduce carbon emissions.

While meeting CO2 reduction goals and anticipating new energy loads from electric vehicles, utilities need to keep pace with more intermittent sources of power. The ability to jointly optimize for CO2, cost, and grid constraints can provide the best performance at a system level. Dynamic signals from the power grid combined with EV charging automation could be used to inform utilities' incentive programs, influence consumer behavior, modulate peak demand as EV adoption grows, and reduce carbon.

About the Study
The study examined 100,000 sessions of in-field electric vehicle charging data and analyzed the location- and time-based fuel mix of the power grid to characterize the carbon intensity of common EV charging patterns. It drew on anonymized Sense home energy data and high-quality carbon intensity data from Singularity Energy's Carbonara platform. Previous analyses of carbon intensity have relied on annual averages that can be two or three years old. Combining these real-time data sets, the study simulated EV charging for carbon intensity to identify carbon reductions. For more details, get the complete study. To learn more about other studies from Sense, visit sense.com/utilities

About Sense
Sense's mission is to reduce global carbon emissions by making homes smart and efficient. We empower people to care for their homes and families while contributing to a cleaner, more resilient future. Founded in 2013 by pioneers in speech recognition, Sense uses machine learning technology to provide real-time insights on device behavior, even for those devices that are not "smart." Customers rely on Sense for a wide range of uses including monitoring their home appliances, determining whether they left appliances running and identifying how to reduce their energy costs. Sense has received investments from two of the world's largest energy technology companies, Schneider Electric and Landis + Gyr. Sense is headquartered in Cambridge, Mass. To make sense of your energy, visit sense.com.

About Singularity Energy
Singularity Energy enables the future of decarbonization through actionable data and novel algorithms. Carbonara, a carbon intelligence platform built by Singularity Energy, provides high-quality, actionable grid carbon data and a suite of innovative products, developer APIs, and intelligent tools for companies to build data-driven decarbonization solutions. Use cases of Carbonara include planning, reporting, and optimization for decarbonization and electrification projects like EV fleets, battery storage, smart devices, and 24/7 clean energy. Singularity Energy is a winner of the Harvard Physical Science & Engineering Accelerator, the Greentown Labs Bold Idea Challenge in partnership with Schneider Electric, the National Science Foundation Small Business Innovation Research Grant, and a URBAN-X Cohort 09 company. To turn your electricity data into precise carbon emissions insights, visit: https://carbonara.energy/

Media contact: [email protected] 

SOURCE Sense

Related Links

www.sense.com